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Abstract

A gemneral convergence theory is developed for iterative
processes of the form X1 = ka, k=041,4s03% it is founded
on certain nonlinear estimates for the iteration function G
as well as on a socalled concept of majorizing sequences.
This new approach reduces the study of the iterative process

to that of a second order nonlinear difference equation,

The theory contains as special cases both the wellknown
contraction theorem as well as the Newton-Kantorovich theorem,

and, moreover, it encompasses all similar theorems given so

far for approximate Newton processes of the form

xk+1 = xk - B(ﬁ)Fﬁ [] k=o'1’.0
Various generalizations of the theory applicable to non~
stationary processes of the form xk+1 = k;k,*k=o,1,.., are

also discussed,
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A UNIFIED CONVERGENCE THEORY FQOR A CLASS OF ITERATIVE PROCESSES
1

Werner C, Rheinboldt

1l. Introduction

One of the central numerical techniques for solving a nonlinear operator

equation Fx = O is Newton's method
(1.1) X, =% - (P ()P, k=0,1,0.. .

Here F'(x) denotes the Frechet derivative of F at x, Partly to overcome
possible numerical difficulties connected with the evaluation of F?! at
each step, and partly to simplify the solution of the linear problem associ-

ated with (1.1) for each k , approximate Newton processes of the general form

(1.2) X1 =X - B(x)Fx , k=0,1,...

have received increasing attention., Here B(x) is for each x a linear operator
which is usually derived from or related to F'(x). For example, the iterations
studied by Ben-Israel £2],[33, Bryan [4], Lieberstein [ll], and Zincenko [21],
[22], are of this form and so are the socalled Newton-Gauss-Seidel methods
considered by Ortega and Rheinboldt [153. A generalization of (l.2) are the
processes where instead of B(xk) only some sequence of linear operdors Bk

is given, i.e.,

(1.3) X, = % - B Fx. 4 k=0,1,... .

Some special results about iterations of this last type have been given by
Bartle [1]. However, the form (1l.3) encompasses almost all useful iteratious
and hence meaningful general results can probably only be expected once the

Bk are specified more precisely.

When only metric properties of the underlying space are used, there are
three brogd classes of convergence theorems for methods such as those mentioned |
above. The point-of-attraction theorems begin with the existence of a soluti-
on x" of Fx = O and assure convergence of the iterates X, to x* if only X,

is chosen sufficiently close to x%. The most ideal and at the same time ra-

rest theorems are the global ones where a 'large’ domain D can be specified

1) Institute for Fluid Dynamics and Applied Mathematics, and Computer Science
Center, University of Maryland, College Park, Maryland.
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and for any X, € D the iterates converge to some solution of Fx = O,
Between these two extremes are those convergence theorems which begin
with conditions about the initial approximation X, and conclude from this
that starting from that X, the iterates converge tc a solution., The best
known prototypes for this last class are the contraction theorem and the
Kantorovich proof of Newton's method {see e.g., [7],{8}).

In this paper a unified theory is developed for convergence results of
the above third class applicable to a broad class of methods. Necessarily,
of course, this theory contains as special cases the contraction- and the
Newton-Kantorovich theorem, thereby refuting the observation frequently
made that these two results are conceptually very different from each other.
But more importantly, the theory also encompasses, as far as can be deter=-
mined, all the theorems of the mentioned type given so far for processes
of the form (1.2) and to some extent of the form (1.3)e

The theory is founded on nonlinear estimates for the iteration function
and on a socalled concept of majorizing sequences. This latter concept is
based on a simple principle observed to underlie Kantorovich's majorant
proof of Newton'’s method, while the nonlinear estimates occur in a natural
way in the study of the processes (l.2) and represent a needed generalizationm
of estimates used by Collatz [6) and Schroder [l?},[l&}.

In its simplest form, the general convergence theory reduces the study of
the iterative processes to that of a second order difference equation, In
analysing the different known results about various processes, it turms out
that the assumptions made always happen to lead to a simple solvable diffe=
rence equation, Upon investigation of natural extensions of these simple
difference equations, it is observed that the unified approach used here
permits in several cases the generalization of these individual results -
at the same time providing an insight into the various possibilities of
proving many other similar results. Simultaneously, this approach makes it
evident that a much deeper study of the resulting difference equations is
now needed in order to arrive at more general and at the same time more

widely usable convergence theorems for the processes (l.2) and (1.3).

The general convergence theory is presented in Section 2§ then Section 3
gives as a first application a theorem for the process X, = ka 9 k=0,1404,

which in turn provides the basis for subsequent uniqueness results. Section 4
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treats iterations of the form (1.2) and includes as special cases various
theorems about Newton’s methody finally, Section 5 develops an extension
of the theory applicable to the general case (1.3).

I would like to express my thanks to Professor James M. Ortega of the
University of Maryland for numerous enlightening discussions which helped
crystallize several of the concepts developed here., In particular, Professor

Ortega also found independently a short proof of Newton'’s method along the
lines used here (see [16]).
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2+ Majorizing Sequences and Generalized Contractions

In [8] Kantorovich introduced a proof for the convergence of Newton’s
method (1.1l) based on the socalled concept of a majorizing operator. In
brief, an operator equation x = Gx on a Banach space X is said to be
majorized by the real equation t = @(t) if HGx -x | £ w(t )-t and
ta'(x)ll € ¢*'(t) whenever "x—xollé t—to. Using thls assumptlon, the con=-
vergence of the iterative process X1 = ka in X is deduced from that
of the iteration te1 = ¢(tk) on the real line. Although this approach
proves to be effective for the study of Newton'’s method itself, it rests
essentially on the requirement that the majorizing process have the same
form as the underlying process, and this in turn is a severe limitation
when it comes to the study of the general processes (l.2),

Actually, a closer study of this Kantorovich approach reveals that
underlying it is a very simple principle. In order to describe it we
introduce the following concept.

2el - Definition: Let {xkg be a sequence in the metric space X, Then a

real non-negative sequence { kﬁ is said to majorize (xk& if

g(xk+l'xk) < tk+l - tk » k=0ylyeee

Note that any majorizing sequence {t of {xkﬂ is necessarily non-
decreasing. If {t S majorizes {xks C X, then for m >k =0

m =

(2.1) g(xm,xk) & ,,é §("j+1’xj) < ‘%‘_\(tj*_l - tj) =t -t .

Hence, if 1lim tk = t¥< teo exists, then {xkg is a Cauchy sequence in X,
and ,therefore, if X is complete, 1im’xk = x* also exists and for m —» =0
we obtain from (2.1) the error estimate
(2.2) g(x" x) €t -t y k=0y31y0ee .

This is the above mentioned principle behind the Kantorovich proof of
Newton's method. The idea of the majorizing sequence lies in the simple

&< + o0 i
. 8,1 0 then %i 8y is a
sufficient condition for the convergence of the sequence ~{xks in the
complete space X. The partial sums t_ =0, t, = Zz'sj y k=1,250000
; .

observation that if g(xk+1,xk) £
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form a majorizing sequence of {xk% . Since Zg.g(xk+l,xk) may be viewed
as an upper bound on the 'total path length' of the sequence {xk\ ,'the

majorizing principle says that when the total path length is bounded the
sequence is convergent.

For this principle to be useful a mechanism is needed to obtain a majo-
rizing sequence {tk} for given {xkﬁ e« This in turn requires appropriate
assumptions, either about the generating mechanism of the sequence {xks or
at least about the relation between succeeding members X, and X e1® It turns
out thgt in many cases when the X, are defined by the process

(2.3) X .1 = ka ’ kéo,l,... v

majorizing sequences can be constructed by solving a difference equation
of the form

(2.4) t -t = (p_(tk t

kel = Sk a1t o teop)

for given to and tl.

To simplify the notation, the following class of functions shall be used.

e2 - Definition: A& function ¢: Q ¢ RP — R is said to be of class ?(qQ)
if it has the following properties: (a) The domain Q is a hypercube
qg = Jl’<J2*-~ x Jp where each Jl is an interval on-[0,°°) containing O, i.e.,

an interval of the form [0,a] , LO,a), or [0,90) ; (b) ¢ is non-negative

and isotome on Q, i.e., if (u ) seey u(l)) € Q, izl,2 and u( )__ uQZZ'
= 1 . then 0 4 <l) . (1)\ - m(u(Z) . u(a)'.‘] Jos
Y] “—geve gy ‘V | ] p - 1 ) ] P

Let ¢ € T2(Q) , Q= J = J,%J5 + Then the solution {t,} of the difference

equation (2.4) is said to exist for given toe £y if

(2.5) b1~ te € J1 ., t € I, N J3

for all k = 0, i.e., if the entire sequence {tk} defined by (2.4) exists.
Using this notation we can formulate the following simple but, at the

same time, general convergence theorem for the process (2.3).

2.3 - Basic Majorant Theorem: Let G: D C X—>X be an operator on the complete

mnetric space X, and suppose there exists a function ¢ & ('B(Q) and a point
xoe D such that on some set Doc D
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(2.6) - @ (a(Gx), Gx) € o( g(Gx,x), ¢(Gx,x ), g(x,xo))

whenever x,Gx € D_. Assume that for t =0, t Q(Gxo,xo) the solution

l=
{tks of the difference equation (2.4) exists. If the sequence {xkg defined

. . s . . e . ¥
by (2.3) is contained 1n‘Do, then (tks majorizes {xkﬁ o Hence if lim tk =t
<4+ , also lim x = X exists, and the error estimate (2.2) holds. If

x" € D and G is continuous at x', then x* = Gx*,

The proof follows by induction. The relations

_ P _
Qlmper X g) € b =ty 0 gln X)) €ty
clearly hold for k=1, and for general k the isotonicity of ¢ implies that

R e,qe X)) € 00 90,y X 1)y 90,y %)y (3 54 %))

Z - - -
€ ooty =t gy by by ) = by 0 - by

- _ _ .
and hence by (2.1) that Q(x. .,X)) € t_, =t =t, ,  Thus,{x} is
majorized by {tkﬁ which proves the convergence result. The fixpoint state~

ment follows directly from (2.3) using the contimuity of G at x¥.

In the application of this theorem it must be ascertained that {ka C Do .
A frequently used condition is GD' ¢ D' for some set D'C Do; then
clearly kas C D' whenever xo<5 D', A conceptually different approach
places restrictions on some of the early iterates and infers from this that

all subsequent iterates remain in Do‘

2.4 - Lemma: Let the conditions of Theorem 2.3 be satisfieds If X yeeeyX, € D
and ‘ o
(2.7) .s-(xm' tk-tm) C DO’ k:m’m+1,ooo Y l)

then x € D_ for k2 m. If lim ¢ = t"<+oo exists, (2.7) is satisfied if,

a % * L 4
either (a) S(xm, t - tm) <D, or (v) S(xm, t" - tm) C Do and ¢, < t
for k = Oe

The proof proceeds again by induction., If X rese X, € Do for some

l) S(x,r) and S(x,r) denote the closed and open ball with center x

and radius r,
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k 2 m, then X1 is still defined and, as in the proof of Theorem 222y it

follows that g(xj+l, xj) < tj+l - t.‘i for j:O,l,...,Iﬁ. Therefore by .’
(2.1), R (%10 x,) < t ,1 -ty and hence x . € S(xm, te - tm)c D, e
The second part of the statement is immediate, '

In most applications the index m in (2.7) is set equal to O or 1, and

- more specifically - the simple conditions §(xo, t*) ¢ Do or

'§(x1, t- tl) € D, are used.

Theorem 2,3 together with Lemma 2.4 contain as special case the usual

contraction theorem. In that instance we have ¢(u) = aqu with o <1 and
(2.6) is replaced by the stronger condition

R(Gy, Gx) < ¢(g(y,x)) =a R(yyx) , x5 € D, .

It then follows immediately that t* = « tl/(l-a), and hence the condition
§(xl, t* - tl) C D is equivalent to the well-known condition E(xl,r) C Do
for ©r = a g(xl,xo)/(l-a).

Theorem géé places the burden of the convergence proof on the analysis

.of the behavior of the difference equation (2.4). The question arises

whether general comnditions for ¢ can be found which assure the convergence

of {tkg for certain tl. In the special case of the equation
(2.8) teor ~ % = (p(tk - tk-l) » £, = 0, t; given,

several such results can be derived, We shall not go into details here, The
principal tool of the analysis is in this case the following well-known

lemma which will also be needed several times later on (see €eley [9] e

2.5 - Kantorovich Lemma: Let i [to, 501 ¢ R* -» R* be continuous and

24—

isotone, and %f(to) 2t

< ,
o t(s,) £ s . Then the sequences t, , = ¢(t,),
sk+l =. Y(Bk)’ k=°'l,..’ Satisfy
4 * - - ‘4 ¥ - . 3
to_tkétk+lélmtk-t_ 8 --lmské sk+1£skés°

where t* is the smallest and s‘ the largest fixpoint of W in [to, s(;] o

In the case of the full difference equation (2.4) no general convergence

conditions are known. The analysis of this equation is considerably simpli-

fied if there exists a fumction % : JC R'—> R* such that J C J

39
y(J) C J,y and w(J) - J € J,,and that

1
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(2.9) el (t) =ty (), t) = ¢(w(t)) - ¢(t) , ted,
It is then easily seen that {tkg ¢ J is a solution of (2.4) with t_=0,
t, = w(0) if and only if
(2,10) te1 = ‘f’(tk) vt = 0, k=0,1,000 &
Accordingly, (2.10) shall be called a 'first integral® of the difference
equation (2.4). If t'€ J and ¥ is continuous at t*, (2.10) implies that
t" = ('), and if ¢ is isotone, it follows from Lemma 2,5 that (t)> t

for 0 <t < t', and that t* is the smallest non-zero fixpoint of 4 in J.

Theorem 2

represents a generalization of a similar contraction theorem

3
of Collatz [6] who essentially assumes instead of (2.6) that

(2.11) g(Gy, Gx) € Y (Q(y,x) + g(x,xo)) = w(R(xyx)) , x,y€D

where ¢(u,v) = ¢(u+v) = $(v) is of class F'Z(Q). Using our terminology,
Collatz then proceeds to show that

is a majorizing sequence of (xkg. This is evidently equivalent to the
assumption that (2.12) represents a first integral of the difference
equation (2.4).

Instead of (2.11),Schroder [18] considers more general conditions, as,

for example,
(2.13) ¢ (Gy.Gx) Z o( (y.x), J(yux )y g(x,x ), Q(Gy,x), (Gx,y))

where ¢ € FE(Q). But this generality is not usedy in fact, the additional

assumption is made that a function ¢ = W (u) exists such that
Y(v) = Y(u) = o(v-u, v, u, Y(v)-u, $(u)-v) .

This implies that (2.11) holds, and since in all subsequent considerations
Schroder only uses the majorizing sequence (2.12), his results are no more
general than those of Collatz.

In connection with the iterative processes (l.2) we shall see that
condition (2,6) frequently arises in a very natural way while the correspon=-

ding more restrictive condition
(2.14) Q (Gy, Gx) < o %(y) x), Q(ero)’ S’(xyxo))

only applies in a much smaller domain, However, the use of this condition



(2.1%) together with the existence of a first integral (2.10) of (2.4)

permits the derivation of some uniqueness results for the fixpoint x*.

The following uniqueness theorem is a slight generalization of a result
of Collatz [6] .

é é. - First Uniqueness Theorem: Suppose that the assumptions of Theorem 5;2
are valid except that instead of (2.6) the condition (2.1k4) holds for all
X,y € D . Suppose that y : J C Rt — gt defines a first integral (2.10)

of the difference equation (2.4), and that liam ¢, = t' = ¢(t") € J. Then
there is no other fixpoint of G in the set D N g(xo, t*) except possidbly x%.

[
=

Proof: Suppose that y* = Gy*¢ D, /\g(xo, t“), then g(y',xo) <t =t -t
and by induction we see that ¢ (y<, xk) £ t° - t, for all k * 0. In fact,
since itks majorizes {:ﬁ{\ it follows that

g(y‘, X0 = ¢y, 6x) £ o(g (3% x ) 0(y% x )y @z, x))
£ ot* - by £, t) = (") - it = tF -t

]

k+1 °
This implies that x" = lim x_ = .
Note that the existence of the first integral is not fully used and

that the theorem remains valid if only the weaker condition

*

et =t ,t ", t) =t" -t

k’
holds., For ¢(u) =au 4, O <a < 1, the theorem evidently provides the usual

uniqueness result connected with the cantraction theorenm.

In the case when ¢ depends only on the first two variables we get a

somewhat larger uniqueness domain,

2
uniqueness, theorem 2,7 hold except that the condition (2.14) is replaced by

7 - Second Unigueness Theorem: Assume that all assumptions of the first

(2.15) Q(Gy, Gx) < of Q(y,x), g(y,xo)) s X,¥ GDO.

. . N n ~ . ~ A
Suppose there exists a point t € J, * > t  such that ¢(t) < t for t'¢ t< t,

Then there is no other fixpoint of G in D N S(xo, £ ) except possibly x*,

Proof:s ket y° = Gy" € D, N S(xo, t ). 1f s, = g(y",xo) < t"’ then the
result is covered by 2.6 . Hence) assume that t* < 5, < % o It then

. . . ¥ -
follows by induction that ¢ (y*, xk) € s - t, where s . = \'z(sk),

k=0,14¢e« « In fact, using this as induction hypothesis we have




Qlx 10 7)) £ e(R(x, ¥, 9(x, x)) £ olay =%, t)

= Ylo) = ywlt) =55 =ty o

By Lemma 3;2! clearly lim 5 = tb and hence again x¥ = 1lim xk = y’.

Note that the 'best possible’ £ is evidently the smallest fixpoint

t* > t* , t" ¢ J of ¢ , provided that such a fixpoint exists and of
course that (t) < t for t"<¢ t < %,



3e A Basic Application

For the discussion in this and the following Sections we shall assume
that, unless otherwise specified, X and Y denote real Banach spaces, and
that F: D C X—>Y is a given operator. Further, L(X,Y) is the Banach space

‘of all bounded linear operators with domain X and range im Y. For the sake

of simplicity we shall also use the following notations:
(a) F € LipY(Do), if |Fy - Fxfi¢« vy||y - x{| for x¢€ D, < D.

(b) F € OJ(DO),if F possesses a bounded linear Gateaux derivative
DF(x) € L(X,Y) for 21l x € D,.

(¢) F € T(D,), if F has a Frechet derivative F’(x) for all x &€ D_.
Clearly then also F & g(Do).

Note that by definition F GQj(Do) implies that every point x € Do is
an internal point of D, i.e., for x € Do and z € X there exists an € > O
such that x + tz ¢ D for |tl< e .

The results collected in the following lemma are well-knownj see, for
example, Vainberg {19] .

3s1 = IfF: DCX—>Y and F¢ Q(Do) on some convex set D & D, then
(a) [OF(x) ¢ v for x €D_ implies that F ¢ Lip (D)) ;

() fBF(y)=9F(x)| € y for x,y € D_ implies that
|Fy = Fx =9F(z)(y-x)|| € vliy - x{| for x,y,z € D,

(¢) F éLipY(Do) implies that F & T(D ) and that
IFy = Fx = F'(x)(y=x)[| € vy - x|* for x,y & D,e

A first and -simple application of the results of Section 2 is the
following theorem which will provide the basis for a number of subsequent

uniqueness results.

3.2 = Theorem: Let G: DC X— X be such that G G'S'(Do) and G' & I‘ipy(Do)

on some convex set DOC D, Assume that for some xoé Do the estimates
"G’(xo)\l € 6<1,llx~x|l€a and k= va/(1-6)* £ 1/2 hold, and set

& 1 - J1-2n a K 1+ {1-2h
(3.2) £ = B ' © = Tm -5

Then, if s(xo,t ) C D, the iterates X,y = 8 k=0,1,.0 J remain in




E(x ,t") and converge to a fixpoint x* of G which is unique in DO/\S(xo,t").
Proofs For x,y € D we have
fgy - axll¢ iy - Gx - " (x)(y-x)|| + (((a*(x)-G’ (x, ))(y-x)ﬂ
(3.2) NGl £ 2y iy - %l + vhx - xJhy - xl
+ 6y - x|\ = o(ly-xl, iX-x|()

where ¢(u,v) = é Y w4 Yvu + 6u . It is readily seen that @(u-v,v) =

y(u)- ydv) where w(t) = 2 Y t% 4 6t + « , and  is evidently isotone

and has the fixpoints t“ and t . Moreover, ¥(t)< t for t"< t < t*“ unless
= 1/2 in which case t" = t . Hence v defines a first integral of the

difference equation (2.4) corresponding to ¢, and the Kantorovich Lemma 2 23

assures that 1lim t, = t'< 42, Now Lemma 2.4 implies that x,_€ E(xo,t*) <D,y

k
and Theorem gig provides the convergence statement. Since G is continuous,
clearly x* = Gx* , and, in the case h=1/2, the uniqueness follows from

Theorem 2,7 and otherwise from Theorem 2.8.

Note that in the case h < 1/2 also the usual contraction theorem applies.

‘Thus the nonlinear estimate (3.2) provides here only the convergence for the
border case h = 1/2 and gives the larger uniqueness domain.

This theorem has immediate application to the generalized chord method

-1
(3.3) X .1 =% - AT Px. , k=0,1,...
where A &€ L(X,Y)., For future reference we phrase this in form of the follow-
ing corollary.

323 = For F:DC X —>7Y let FGT(D ) and F? €L1p (D ) on a convex set D C D.
Suppose that A € L(X,Y) has a bounded inverse é L(Y,X) and NA~ Hc.B.
Choose x_ € D_ such that [T - A™F’ "(x )€ 8 <1, HA Fx)(éaand

h= BYa/(l-b) é. 1/2 and define t*, t“ by (3.1)e If S(xo,t“) C D, then the
iterates (3.3) remain in g(xo,t*) and converge to a solution x* of Fx = 0O

which is unique in DA S(xo,t“?.

This result is essentially a theorem of Kantorovich and Akilov [9} o It
"contains as special case the well-known convergence theorem for the modified

Newton method

(3.4) X1 = % - (F'(xo))'lka s k=0yLlyeee o
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Another corollary is the following result of Linkov [12] .

a4 - Let X be a real Hilbert space and F: D € X—>X such that F & T(D_) and
F'& LipY(Do) or a convex set D C D. Suppose that for some x S D, » F’(xo)
is selfadjoint and =« | z|®* = (F’(x )z, z) =2 o flz{®* 4, 2 € X, with ¢ > O, and
that h =y \lFx (/o € 1/2. with a/(l-b) =l Fx ol /0 define t*, t” by (3.1)
If S(x i) C D ot then the sequence

%ol =% T ger P B0 Tees

remains in §(x°,t') and converges to the only solution x“of Fx = 0 in
*
DA S(xo,t )

The proof follows from Theorem
Then IlG’(xo)ll < max(|l1l-w=z},|l-w
for W = 2/(o+1),

if we set GX = X ~wIFx with w>0,

= §,, and §,, assumes its minimum

The corollaries 3.3 and 3.4 were originally proved under the assumption
that F is twice Frechet differentiable and ({F'(x)[| £y in D . If we reduce
the conditions on F by assuming only that F& OJ(DO) and [[9F(y)-2F(x)| £ v
in D_, then the estimate (3.2) for Gx = x - A" Fx reduces to a linear
contraction estimate, Although this is an extremely simple result it has been
repeatedly announced in various contexts, and we shall not go into details
here., Slightly more interesting is the case when G is not a standard contrac-

tion but an 'iterated contraction' in the sense of Theorem 2,3,

2 - Let F: DC X Y be such that F& §(D_) and KDF(y)=-2F(x) < v for

all x,y from a convex set D € D. Suppose that for some x & D and B € L(Y X)
we have B’DF(x )B = B, If uB((£B and By € 1 as well as S(xo ) e D, where
tf

= l(BFxo i /(l-By) , then the sequence X = F - Bka, k=0,1,.s , remains
n g(xo,t*) and converges to a solution x* of BFx = O,

Proof: Set Gx = x - BFx , then

la(ex)-Gxll = | -BF(Gx)I = [ -B F(x )BFx - BF(Gx) + BFx ((
=] B [?)F(x ) (Gx-x) - F(Gx) + Fx]| € {37 [Gx - x Il

whenever x,Gx & Do' Hence, Theorem 2.3 applies with ¢(u) = Byu.

The condition B}F(x )B = B plays a central role in the theory of
generalized inverses of -)F(x )e Theorem 3.5 represents a modified and

somewhat improved version of a result of Ben-Israel (3] .



L, Approximate Newton Processes

In this Section the theory of Section 2 is applied to processes of the
form (1.2). More specifically, we shall first consider the iterations

(4.1) X1 = % - A'l(xk) Fx, , k=0,1,...

where for fixed x, A(x) is a linear operator., Different results are obtained
depending on the invertibility assumptions placed upon A(x); the simplest

case is when A(x) has a bounded linear inverse in the entire domain,

4,1 - Theorem: Let F:t D< X —> Y be such that F GT(D ) and F® ¢ Lip (D ) on
a convex set D C D. Suppose that A: D, C X-—> L(X,Y) has for each xé D a

bounded 1nverse A~t e L(Y,X), and that it It < By || F'(x) = A(x)(l ) for

'xéD ~ Let x € D, be such that llA"l(x )Fx l £ « and h=-aya+aa<1.

If S(xo,r) € Do where = a/(1-h) then the sequence {xk& def:l.ned by (4.1)

remains in §(xo,r) and converges to a solution x¥ of Fx = 0.

Proof:z Define G: D, CX—=>X%, Gx=x = A-l(x)Fx ; then, whenever x,Gx € D

h.2) la(ex) - ax| (| -a"t(ex)F(ax){ € B lIF(Gx) = Fx = F*(x)(Gx-x)l|
o2
+ Bl Ax)-F (X)) (ex-x) < o(llGx-xl)

where ¢(u) = :2]: By u2 + Bd u o+ Thus we have to consider the difference equation

1 2 _
(443) tg =t = 3By (b =t 007 + B8 (t -t ;) 4 k=0,1,..
with t = 0, tl = a, Evidently, t2 - t, = ha < o« and by induction
- < - - >
t1 t It h(tk t, 1) as well as %) -t ; <a for all kx 2 1, Hence,
t < a Z hJ and therefore 1lim t. = t* ¢ a/(l-h) = r <+o0 exists and

k k
the. convergence follows from Theorem 2.3, Since clearly x GD and A” (x’“)

is nonsingular, evidently x* = Gx* implies Fx'= O.

In the special case of Newton’s method we have A(x) = F'(x) and hence
6§ = 0 and h =:-Jé'- By o For the solution of the reduced difference equation (L4.3)
it then follows immediately by induction that

k
: 27=1
- Va
tk+1 tk < ah
which readily implies that
k
* _ h2 -1
t = tk < a Zk
l-nh

thus giving the usual quadratic convergence of Newton's method. This result
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about Newton'’s method is generally known as the Newton-Mysovskii theorem

(see L]-}] de

In the general case when 6 > 0, the convergence is clearly only linear.

Besides the error estimate (2.2) which always holds when a majorizing

sequence has been found, we can also derive in exactly the same manner as (4.2)

the non-computable error estimate
1 : D2
I=" == 0 € Foy lIx"=x 1% + 8o fIx" x|
which for 6 = O again gives the quadratic convergence of Newton's method.

It is not difficult to generalize this result - for example, by assuming
only that F' satisfies a Holder condition lIF'(y) = F'(x)|| € vlly - x“A
with O< A< 1 for all x,y € Do. This changes the difference equation (4.3)
to

py 1+A
5 By (tk - tk_l) + Bd (tk - tk_l)

w
"

but does not affect the proof procedure., For A = O we can use Lemma 3.1 (b)
and obtain, already in the case when F & %(Do), that

i G(Gx) =Gx| < B(y+d) liex - x|
which means that the convergence condition then reduces to B(y+6) < 1.

In his convergence proof of Newton’s method Kantorovich assumes only that
F'(x) is invertible at X , then using Banach's lemma to assure the inver-
tibility at all further iterates. This idea can be extended to the general
process (4.,1). Tt leads to a nonlinear difference equation for which no
explicit solution appears to be known except for special values of the para-

meters. Following is a summary of the basic material about this difference

equation.

Lks2 - Consider
t Y S p, (t, =t 2 (p, + pgt, )(t, =t o)
k+1 k™ 1= P#tk 1 'k k-1 2 3"k-1"""k k-1

CY)
k=l,2,...

.where Py 2 0, izlyes,lte If for some parameter set (pg, ao) the solution
o s s 0 . ,0 - .
{Fki satisfies tk £ tkgl’ k 20, and 1lim tk -
(p.,a) with O £ p, € p; , izlyee,4, 0 £ a £ «°, the solution {t, | is again

i i i . oe k
< > < =
k=t € t.If P, > O 0 = Py <1, Ps + Py Zpl

and 0<La £ (l-pa)’/hplﬁthen the t,_ are strictly increasing and

=t < 1/p,s then for any

i

nondecreasing and lim t
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. L § 2 ot
lim ¢, =t = —-—-apl [(l -p,) - \{ (1 -p) -4pla.]
Proof: Clearly,
(u,vow) = — 1 -p u2+-(p + P,W) U
QLT 1-pyv 1 " MPa 3
is of class r3(Q) with Q = [o oo) x {0, 1/p,) x [0y =). The fact that
o
tl = tl > 0 and tk < e € t° < l/Pq then implies by induction that
tk < tk for k2 0

For the proof of the second part set
> ,
u(t) =pt" - (1 ~ pa)t +a 4 v(t) =1 = Pt .

u(tk)
tk+l =. tk + W ’ to =0 4 k=0,1y000

Then

is a first integral of (4.4), In fact,
- 1 I ?
bea "t = Ty (B0 - () = et )0y -ty )

(4.5) k

. ] - = - -

O S IR TN  ICHIE S | ™ RS S
It is easy to Verify that t“ is the smallest fixpoint of t)= t + ul(t)/v(t).
Moreover, since wu(t)/v(t) > 0 for 0 < t < t*, it follows that t < ¢ (t)
for 0 <t < t%, & computation analogous to (4.5) shows that

4(t) = ;%'{5'[:91 (t* - )2 + (p, + th)(t* - t)} >0

for 0< t < t" since

o N\ \F 2 - ¥

P -— -\.* .- . N e
Bt <pt o= G-py) - f Gepydt = Spje = pgt

\

TAN

-
de

Now t, = a < t%, for otherwise u(a) = O leads to a contradiction, and hence

e L b1 L t° for all k > 0 and 1lim t,_ = t*,

Using this lemma we now obtain the following convergence result for (4.l).

443 - Theorem: For F: D C X —>Y let F G‘T(D ) and F* ¢ L:.p (D ) in a convex
set D C D. Let A: D < X—» L(X,Y) and a point x, € D, be such that

I A(x) - A(x W < n Rx -x h , and [[F'(x) - A(x)l( 6, + 5, Tx - XO“ for

x€D, (6 o! 91 = 0). Assume that A(x ) has a bounded inverse A~ (x ) € L(Y,X)
with || A"l(x €8, It & (x )Fx { £ « , and that Bo, < 1 and
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h = cJB’Y(x,/(l--B&o)z € 1/2 where o = max(l, ('q-a.-bl)/Y). Set
C4.6) ¥ . L= Yi-2n_«o - L+ V1-2n/c' o
¢ = h 1-660 ! = h l-Bﬁo ¢

If 5(x_,t") C D, then the sequence {ka defined by (k.1) remains in S(x_,t")

and converges to a solution x” of Fx = O which is unique in Do ) S(xo,t").

Proof: For x € S(xo,tr) we have

. Z K 1- Béo Z L
“ A(x) - A(xo)ﬂ € g)x - xo]( L nt €£ovt £ B < 3
Hence, by Banach's lemma, A(x) is nonsingular and
-1 Z B. ’
R A (x) “ b 1 - gn‘ “x - xou 9 X é S(xO’ t ) e

Therefore, Gx = x - A'l(x)Fx is defined on S(xo,t"'), and if x, Gx are

contained in this open ball, then

[ atex) - exl| = [l =2 ex)F(ax) ||

B [ . , __
(4.7) £ gy Gx-xol(]_“F(Gx)'Fx'F (x)(ax-x)[ + | (F (x)-A(x))(Gx-x)I[]

£ ol Gx=xit , i Gx-x Il , Il x-xo\( )
where '

Q‘(u,,v,w) = 'i-_—}—B'n—V. [-2]; Py uz + B( 60 + 61w) u]

Hence, the difference equation (2.4) in this case has the form (4.4). Now,

1l . 1
0<plziﬁyép;='§dﬂm ’ pa.—:pg:ﬁb 41,

[»]
p, = BB < n° = Rlay m-n) . mn, = 'r_s.o = Bn
3 i l — :3 i [} L4 2 J.L’_ Lq "o
and :
- (o] Z 1 0,2
a =a < —Zpl (1 pa) .

The case a = 0 can be excluded since otherwise already Fxo = 0§ by 4,2 it

therefore follows that the tk are strictly increasing and that 1lim t, £ £,

k
Now by Lemma 2,4 (b), {xk} C S(xo,t“) and convergence is obtained by

Theorem 2.3, The fact that Fx* = 0 follows from

.t W Fal < NCate)-atx ) G g2+ (Lalxy) G g x|l

< (gt e+ ﬂﬁ(xo)l) %, = xk!(
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The uniqueness is a. direct consequence of 3.3 applied to the modified

process X . = X A'.-l(Xo)ka s k=0,1 40 o

The frequently mentioned Newton-Kantorovich theorem is obtained as the
special case when F*(x) = A(x). Then ¥y = 7, 6, = 6, = 0 and hence ¢ = 1,
and all conditions reduce exactly to those of the Newton-Kantorovich theorem.
A direct proof of that theorem using the estimate (4.7) and the concept of
majorizing sequences was independently found by Ortega [161 ¢ Showing the
simplicity of this type of convergence proof when compared with the proofs

known heretofore,

Note, if we assume only that ﬂF'(xo) - A(xo) I < 6, , then the other
conditions on F® and A assure that | F'(x) - A(x)| £ 6, + (ye) il x = xc"\\ R

In that case we need o = 3 .

As always, the error estimate (2.2) is available for the iteration considered

in l_téé. In addition, a non-computable error estimate of the form

%" - x,q) £ l-Bnl{xk = M[ v = ﬁgl + (o +0llx, _1-x 1) Il x" -xk\ll

can be derived in the same way as the principal estimate (ke7)e For Newton's
method this provides in the case h < 1/2, i.e., t* £ 1/8n , the estimate

By N 2

ey 5 T pner X %) )
again giving the quadratic convergence. If & 0! 61 are not both zero, then
¥ 2 1/8n and hence we have linear convergence with a convergence factor

(po_+Bo t“)/(l Bnt*).

Another special case of Theorem 4.3 is the following extension of a

theorem of Bryan [4] .

by b = For F2 D ¢ X—>Y let F € (D ) and F' ¢ Lip (D ) on some convex set

D < D, and suppose that P: L(X, Y)—-> L(X,Y) is a bounded ln.near operator with

i Pu<1 and [{(I-Pl £ 1. Assume that at x €D, (pF? (xo)) é L(Y,X) ensts
and that the estimates n(PF’(X N7 H é B MF'(XO)“ < 6, li(pF? (xo)) Fxol\éa ’
and B < 1, b= 25ya/(1-s.s,°)2 £ 1/2 hold. With o = 2 define t*, t' by
(4.6), If -S-(xo,t") C D,» then the sequence

X, =X - (PF’(xk))-l Fx, , k=0,1,00
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remains in S(xo,t“() and converges to a solution x¥ of Fx = O which is

unique in D, N S(xo,t").

The proof follows immediately from Theorem 4.3 if we set A(x)= PF’(x);

then vy =-n, 6, = Yy, and ¢ = 2,

IR
Bryan developed his result for a convergence analysis of the Newton-
Jacobi iteration

(kel) _ (k) 2, )
X = X, - _—_-—(_T ’ i=l,ooo n k=0,l,...
l i Elfi(x k ) ’ !

for the solution of a nonlinear system Afi(xl,...,xn) = 0, i=l,s..,n ; this
method was originally suggested by Lieberstein [11]. In this case P maps
every nxn matrix A = (aij) into its diagonal part PA = diag(all,...,ann).

and monotone norms have to be used.

Zincenko [21], [22] has shown that the differentiability condition on F
used in Theorems i;; and 252 can be replaced by corresponding conditions
on A, His theorems, originally proved by Kantorovich's majorant method, can
also be proved easily by the techniques developed here. We shall phrase only
the Zincenko result corresponding to Theorem ‘z*gé_ # the result corresponding
to the simpler Theorem ‘__t;}__. should then be self-evident,

4,5 - Suppose that on some convex set D, < DpnDy 4 F: Dy C X—Y is conti-

F F
nuous and K: Dp € X—7Y satisfies K€ r}‘(D ), K' € Lip (D ), and, moreover,
that F-K € Lip (D ). Assume that for some x_ € D_ (K’(x Nre nx oX)
exists and that | (K'(x ))-'Ll( £ B ]((K’(x ))-'LFx {( , as well as B6 £ 1,

and h = Pya/(1-B6)* < 1/2. With ao_a and c...l deflne t”‘, t"“ by (4.6). If
-S-"(xo,t“) CD_, then the sequence

X, =% - (K'(xk))-lka s k=0,1,000

- remains in S(xo,t‘) and converges to the only solution x* of Fx = 0 in
' '
D.of\s(xo,t e

ProofsFor x € S(xo,if") we have
(K (x) = &2 (x ) € v lix - x Nl < yt" < %—

and hence by Banach'’s lemma, K'(x) is nonsingular and



I (K’(x))"l “ £ T BYp}(X-XO(( y X éS(xo,t*) .

Therefore, Gx = x - (K’(x))-]‘Ex is defined on the open ball S(xo,t*) and, if
x, Gx are in this ball, then

| alex) - Gx || = | ~(X*(ax)) ~1F(ax) I

g ’
Ty "Gx_xoldllx(ex)-xx-x (x)(ex-x) + |[(Fex)-K(Gx)) - (Fx-Kx)“J
< ol ex-x) , lax-x | )
where
-~ plu,v) = _!LBY—V "'Y w4 bul

The difference equation is therefore a special case of (k.4) with

1
Pp=5PFr +p, =B ,p;, =0, p =f =2p o

This falls under the case considered in the second part of 455 and the con-
vergence statement in the theorem is now a direct consequen;e of Theorem 252
together with Lemma 2,4 (b). The fact that Fx‘ = O follows from the estimate
formed analogously t;‘(4.8); finally, the uniqueness is a direct consequence

T 3.3 applied to the process X 1 =X - (K’(xo))-lka, k=0y1ly0ee o

So far, we have considered only the iteration (4.1) and not the process
(1.2) mentioned in the introduction. In the case when in (1.2) B(x) no longer
has a bounded linear inverse, most results given in the literature simply

reduce to Theorem 3,1 « Of a slightly different character is the following

generalization of a result of Ben-~Israel [3].

4¢6 - Let Fx DC X =Y be such that F € T(D ) and F' € Lip (D) on some
convex set D C D, and suppose that B: D ,C X L(Y,X) is a mapping with the
properties ((B(x)l( gy, and ||(B(y)-B(x))Fy| £ n [ly-x| for x,y éDo. Moreover.,
let

(4.8) [ Bx)F'(x)z - zll € 6 zk for x €D, z €B(x)Y .

If for some x € D , B(x )Fx H £ ay, h = L Bya + (n+6) < 1 as well as
S(x ’ a/(l—h)) C D , then the sequence {xk defined by (1.2) remains in
thJ.s ball and converges to a solution x* of B(x)Fx = O,

Proof: Set G: D C X—»X, Gx =x - B(x)Fx ; then, for x, Gx € §(xo,a/(1-h))
[\G(Gx)-cx \( [(B(x)-B(ax)IF(ax)|{ + [(B(x)(F(ax)-Fx-F'(x))(Gx=x) ||

+ [ B(x)F*(x)(Gx~x) - (Gx-x)ﬂ -]é‘- gy |l Gx-xﬁ‘2 + (n+6) {[6x - x{



where it was taken into account that by definition Gx-x &€ B(x)Y. Hence,
we have a nonlinear estimate with ¢(u) = % Byu* + (n+6)u . The corresponding
difference equation has already been considered in the proof of Theorem 4.1

and it is now easy to check that the result follows directly from Theorem 2.3.

Note that when condition (4.8) is replaced by the stronger condition
f I -BxF'(x)|lg 6, x¢& D_, we obtain fley = 6x|{ £ ¢(ky = x1ll)e On the
other hand, if we weaken the differentiability condition for F by assuming
only that F € O;(D‘o) and I OF(y)-oF(x)| £ y, then {|G(Gx) - ax]| <
(By+q+6)K Gx - x| for x, Gx:G-Do. This represents the approach used by
Ben=-Israel.
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S5« Some Generalizations

In its present form the theory of Section 2 applies only to processes
of the form X1 = ka, k=0,1,¢4e o It is not difficult to see how this

theory can be extended to cover the more general processes
(501) ):k'Fl = sza: ’ k=0,1,..-
which include for instance the iterations (1.3).

2:—‘.2 - Extended Majorant Theorem: Consider a sequence of operators Gk:DkC X->X,

k=0,1l,00y on the complete metric space X, and suppose that with certain

= FB(Q), k=0,1,.. o and some point xoé Do the estimates

(5.2) Q(Gk+1(GkX)’ka) T (Pk( Q(ka’x)o ?(ka;xo)o ?(Xon)) y k=0,1,000

oQ
hold whenever x,G X belong to a convex set D C d/\ D, « Assume further that

k k°
the sequence {tklf defined by the recursion
(5.3) t, . =t

kel = e = O = Beae B By
with t =0 and t, = g(Goxo,xo) exists and converges to t" <42, If the

), k=l,2,...,

sequence {xkﬁ defined by (5.1) remains in D, then itk‘g ma jorizes {xk} and

hence 1lim X, = x* exists and the error estimate (2.2) holds.

The proof is completely analogous to that of Theorem 2,3.
The condition {xbs < D can again be replaced by the assumptions of

Lemma 2,4, or by a condition such as G D' < D’ for all k =0 with D' < D,

If (5.2) is changed to the stronger estimate
(5.4) Q(Gk+ly, Gx) £ @ (g(yyx), ¢(yx ), g{x4x)) , k=0,1,..
then a fixpoint statemeht can be obtained.

2:2 = Suppose all conditions of Theorem 5.l are valid but that instead of
(5.2) the condition (5.4) holds for all x,y € D. Moreover, let:

(5.5) lim ot =ty t*, ) =0.

N
If G: D C X— X is an operator such that x“c D and that
N -
&.j;?; Q(Gx ,Gk:(") =0 |,

then x'K is a fixpoint of G.
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The proof follows directly from

A ‘ A . p
g(Gx y X') £ g(Gx*, ee1® ) + Q(Gk+lx . kak) + g(xk+l, x*)
¢ ¢(Gx", Gk+lx*) + o (" x )y (x"yx )y QU ax )) + R(x 4 x*)

o r * - % ¥
£ QUGx", Gy o x7) + @ (=, th,t) & QO 5.%7) .
Note that in the case ¢, = ¢ , k 2 0, condition (5.5) will be satisfied

if ¢ is continuous at (0,t",t*).

5.2 complements results for iterations of the type (5.1) obtained by

Ortega and Rheinboldt [14].
Similar to the results of Sections 3 and 4 we can now formulate a variety

of results for iterations of the type

(5.6) X1 = X - A}:lka y k=0,1,.00

As a typical example,an extension of Theorem & 1l sball be presented here.

X and Y now again denote Banach spaces.

503 = For Fx D CX—>7Y let F e'y(Do) and F' ¢ LipY(Do) on a convex set D C D,
and suppose that Ak i L(x,Y), k=0,l,..,lis a sequence of mappings with
bounded inverses A}: € L(Y¥,X) and \(A; I < By < Be Let ’\F’(xo)-A; < L
and B, .6 € 6 <1, and assume that for some x & D_, ﬂA;lFxoﬂ £ a and

h = Bya/(1-6)* < 1/2. Define t° and t* by (3.1). If §(x°,t“) € D, then the
sequence {xk} defined by (5.6) remains in E(xo,t*) and converges to a solution

2 -l
4

- - T P SR 2 omee : X&
x of Fx = C which D o~ S{x )

.
id udigue an &4 N o v e

o o
For the proof set G X = x - Al'{'lFx 7 then for x, Gx € D

“ Gk+l(ka)- ka (\ = “ -A;}I(F<ka)" < Bk+1 KF(ka)-Fx-F’(x)(ka-x)”
b B IF GO-Fr e+ 1P G- [ e = x|
< Loy llax - x® + (6 + prlix - x D) hax - xI

which leads to a difference equation of the same form as that used in the

proof of Theorem 3.l. Thus the result is a direct consequence of Lemma 2

¥

and Theorem 5.1l The uniqueness follows again from Theorem 3

1 applied
to the process el =X - A;;ka, k=0,1,¢¢ o



If we reduce the differentiability condition of F to F € %(Do) and
assume only that §OF(y)- dF(x)|l £ v in D, o then (5.7) reduces to

(5.8) Nop,1¢ax) -ax |l < (v +8) lax-=xl.

The corresponding convergence theorem represents essentially a result of
Bartle [1].

It is even possible to drop the differentiability of F entirely by
assuming only that ‘

(5.9) | Fy =Px = AGy-x)|[ £ n iy -x| 4 x¥y €D, , k=0,1,..
where Bk+lnk £ h <1 and §(xo, a/(1l=h)) € Do and {“Aku} is bounded.

Theorem 5.3 as well as the simpler results based on (5.8) or (5.9) can

be applied,for instance, to approximate Newton processes of the form

X1 = % - (F'(zk))'l Fx,_ , k=0,1,..
where {zk} is some given sequence of points. Such processes have been
considered by Bartle [1] and Schrdder | 18]. The various possible results
depend in this case again on (a) the differentiability assumption about F,
iee+, whether F éj’(no) and F' € LipY(Do) or F & cJ(Do) and {OF(y)- oF(x)l £ &,
and on (b) the imvertibility assumption about F'(x), i.e., whether
(F’(x))-lé L(Y,X) exists for all x éDo or only (F’(xo))-l € IL(Y,X). We
shall not formulate here the different theorems arising from the various
combinations of these conditonsj their form as well as their proofs based

on Theorem 5.1 should be evident.

There is also a possibility of applying Theorem 5
of the form

Teel = e = A7 (50 Fre k=01,

When the same assumptions are made about A(x) as in Section 4, the resulting

1l directly to processes

difference equations are again either of the form used in Theorem 4.1 or of

that discussed in Lemma 4.2,

In Theorem 5,3 and the subsequent discussions we have avoided the difficult
problem of anaiysing the recursion (5.3) by forcing all ¢, to be equal. The
problem of determining when the solution of the recursion relation (5.3) with
variable ¢, converges to a finite limit, is for all practical purposes an

open question, except when (5.2) has the special form
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(5.10) (G, 1 (G Xy Gx) £ n Q(Gx, x) , k=0,1,c.
i.esy when (5.3) reduces to

tk+l Ll tk =- nk-l(tk - tk"J.)’ k=l,2,00 M to = O, tl =& o

In that case we have &

tk+1 - tk = ( E;ﬂj) a'

and it is readily seen that t < +e if n, €141 for k 2k . This can be
applied to (5.8) when the B, are not estimated by B, i.e., when the constant
on the right is allowed to depend on k.

It should also be noted that the results of Kivistik flO] are of the type
considered in Theorem 5.1 and that in one of his cases the ¢, are variable
and are themselves given by a recursion relation,

Theorem 5.1 represents only one possible extension of Theorem 2.3 to the
iterations (5.1), In particular, there is no reason why the right hand side
of (5.2) should only depend on three terms and should not include terms such
as g(ij, Gj-lx) etc. with 1 € j € k-1, This of course increases the order
of the difference equation and thus makes it even more difficult to find

convergence conditions for the tk.
E very simple example of this extended type of estimate is a wellknown
result of Cacciopoli | 5] , and later Weissinger [20] , who considered the

iteration X1 = ka, k=0,1,.. , under the generalized contraction condition
O(Gkv. ka) £ a p(v. x)
) v E N ©°F

-~ .
with gzrak:< o o In our setting this condition can be weakened to
=0

k+1 k .
g(G Xy Gx) £ ay Q(ny x) ,a =1,
The corresponding difference equation is then
tk-l—l-tk:aktl ,tozo,tl=a

on
. €
with t -(ég; ak)a. '
Finally, it should be noted that all our results can be extended immedi-
ately to spaces metricized by elements of a partially ordered topological

linear space. “ee, for example, Collatz [6] for a discussion of such spaces.

However, in that case the difference equation (2.4) and the recursion (5.3)
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represent relations in such partially ordered spaces and the problem of
determining u@en the tk converge is compounded even further., A variety

of special reéul’cs can of course be formulated also in this case, but
deeper resulti’g;.can only be expected once the resulting difference equations
and recursions are better understood.
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